CS222: Principles of Data Management

Lecture #12
Relational Operators: Join

Instructor: Chen Li
Schema for Examples

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

- Reserves:
 - Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
 (Total cardinality is thus 100,000 reservations)

- Sailors:
 - Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
 (Total cardinality is thus 40,000 sailing club members)
Equality Joins With One Join Column

SELECT *
FROM Reserves R1, Sailors S1
WHERE R1.sid=S1.sid

- In algebra: $R \bowtie S$. Incredibly common! Must thus be carefully optimized. $R \times S$ is large; so, doing $R \times S$ followed by a selection would be highly inefficient.

 - In our examples, R is Reserves and S is Sailors.

- We will consider more complex join conditions later.

- Cost metric: # of I/Os. (We will ignore output costs.)
Simple Nested Loops Join(s)

foreach tuple \(r \) in \(R \) do
 foreach tuple \(s \) in \(S \) do
 if \(r_i = s_j \) then add \(<r, s> \) to result

- For each **tuple** in the outer relation \(R \), we scan the entire **inner** relation \(S \).
 - Cost: \(M + (p_R \times M) \times N = 1000 + (100 \times 1000) \times 500 \) I/Os

- Page-oriented Nested Loops join: For each page of \(R \), get each page of \(S \), and write out matching pairs of tuples \(<r, s> \), where \(r \) is in \(R \)-page and \(S \) is in \(S \)-page.
 - Cost: \(M + M \times N = 1000 + 1000 \times 500 \)
 - If smaller relation (\(S \)) is outer, cost = \(500 + 500 \times 1000 \)
 - (Notice that we were essentially wasting an opportunity!)
Block Nested Loops Join

- Use one page as an input buffer for scanning the inner S, one page as the output buffer, and use all remaining pages to hold a “block” of outer R.
 - For each matching tuple r in R-block, s in S-page, add <r, s> to result. Then read next R-block, scan S, etc.
Examples of Block Nested Loops

- Cost: Scan of outer + #outer blocks * scan of inner
 - #outer blocks = \[\# \text{ of pages of outer} / \text{blocksize}\]

- With Reserves (R) as outer, and 100-page blocks of R:
 - Cost of scanning R is 1000 I/Os; there’ll be 10 blocks total.
 - Per R block, we scan Sailors (S); 10*500 (=5000) I/Os for S.

- With (100-page blocks of) Sailors as outer:
 - Cost of scanning S is 500 I/Os; a total of 5 blocks.
 - Per block of S, we scan Reserves; 5*1000 I/Os for R.

- (With sequential reads considered, analysis changes: may want to divide buffers evenly between R and S.)
Index Nested Loops Join

foreach tuple r in R do
 foreach tuple s in S where r_i == s_j do
 add <r, s> to result

- If there is an index on the join column of one relation (say S), can make it the inner and exploit the index.
 - Cost: \(M + (p_R * M) * \text{cost of finding matching S tuples} \)
- For each R tuple, cost of probing S’s index is about 1.2 for hash index, and say 2-4 for B+ tree. Cost of fetching actual S tuples (assuming Alt. (2) or (3) for index data entries) depends on clustering.
 - Clustered (s_j) index: 1 I/O per R tuple (typical);
 - unclustered: 1 I/O per matching S tuple per R tuple.
Examples of Index Nested Loops

- Hash-index (Alt. 2) on sid of Sailors (as inner):
 - Scan Reserves: 1000 page I/Os, 100*1000 (=100,000) tuples.
 - For each Reserves tuple: 1.2 I/Os to get data entry in index, plus 1 I/O to get (the exactly one) matching Sailors tuple. Total: 220,000 I/Os. (Plus 1000 in Reserves “noise”.)

- Hash-index (Alt. 2) on sid of Reserves (as inner):
 - Scan Sailors: 500 page I/Os, 80*500 (=40,000) tuples.
 - For each Sailors tuple: 1.2 I/Os to find index page with data entries, plus cost of retrieving matching Reserves tuples. Assuming uniform distribution, 2.5 reservations per sailor (100,000 / 40,000). Cost of retrieving them is 1 or 2.5 I/Os depending on the index’s clustering setup.
Sort-Merge Join \((R \bowtie S)_{i=j}\)

- Sort R and S on the join column, then scan them to do a “merge” (on join column), and output result tuples.
 - Advance scan of R until current R-tuple \(\geq \) current S tuple, then advance scan of S until current S-tuple \(\geq \) current R tuple; do this until current R tuple = current S tuple.
 - At this point, all R tuples with same value in Ri (current R group) and all S tuples with same value in Sj (current S group) match; output \(<r, s>\) for all pairs of such tuples.
 - Then resume scanning R and S.

- R scanned once; each S group scanned once per matching R tuple. (Multiple scans of an S group very likely to find all needed pages in buffer pool.)
Example of Sort-Merge Join

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>28</td>
<td>yummy</td>
<td>9</td>
<td>35.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>bid</th>
<th>day</th>
<th>rname</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>103</td>
<td>12/4/96</td>
<td>guppy</td>
</tr>
<tr>
<td>28</td>
<td>103</td>
<td>11/3/96</td>
<td>yummy</td>
</tr>
<tr>
<td>31</td>
<td>101</td>
<td>10/10/96</td>
<td>dustin</td>
</tr>
<tr>
<td>31</td>
<td>102</td>
<td>10/12/96</td>
<td>lubber</td>
</tr>
<tr>
<td>31</td>
<td>101</td>
<td>10/11/96</td>
<td>lubber</td>
</tr>
<tr>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
<td>dustin</td>
</tr>
</tbody>
</table>

- **Cost:** $M \log M + N \log N + (M+N)$
 - The cost of scanning, $M+N$, could be $M*N$ (very unlikely!)
- With 35, 100 or 300 buffer pages, both Reserves and Sailors can be sorted in 2 passes; total join cost: 7500.
 (vs. BNL cost: 2500 to 15000 I/O range)
Refinement of Sort-Merge Join

- We can combine the merging phases in the sorting of R and S with the merging required for the join.
 - With $B > \sqrt{L}$, where L is the size of the larger relation, using the sorting refinement that produces runs of length $2B$ in Pass 0, the number of runs of each relation will be $< B/2$.
 - Allocate 1 page per run of each relation, and do a parallel `merge` while checking the join condition. (Else wasteful!)
 - Cost: read+write each relation in Pass 0 + read each relation in (only) merging pass (+ writing of result tuples).
 - In prior example, cost goes down from 7500 to 4500 I/Os.
- With large memory, the cost of sort-merge join, like the cost of external sorting, behaves like it’s linear.
Sort-Merge Refinement (cont.)

First create sorted runs for each table (S & R)

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>puppy</td>
<td>9</td>
<td>35.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>bid</th>
<th>day</th>
<th>rname</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>103</td>
<td>12/4/96</td>
<td>guppy</td>
</tr>
<tr>
<td>31</td>
<td>102</td>
<td>10/12/96</td>
<td>lubber</td>
</tr>
<tr>
<td>31</td>
<td>101</td>
<td>10/11/96</td>
<td>lubber</td>
</tr>
<tr>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
<td>dustin</td>
</tr>
</tbody>
</table>

..... then merge S & R runs at the same time as joining them...!
Grace Hash-Join

- Partition both of the relations using a hash function h: R tuples in R’s partition i will *only* match S tuples in S’s partition i.

- Read in one partition of R, hashing it using function $h2 (\text{<>} h)$. Scan the matching partition of S, search for its R matches.
Observations on Grace Hash-Join

- #partitions $k \leq B-1$ (why?), and $B-2 \geq$ size of largest partition to be held in memory. Assuming uniformly sized partitions, and maximizing k, we get:
 - $k = B-1$, and $M/(B-1) \leq B-2$, i.e., B must be $\geq \sqrt{M}$

- If we build an in-memory hash table to speed up the matching of tuples, a little more memory is needed.

- If the hash function does not partition uniformly, one or more R partitions may not fit in memory. Can try hash-join technique recursively to do the join of such an R-partition with its corresponding S-partition.
Cost of Grace Hash-Join

- In partitioning phase, read+write both relns; $2(M+N)$.
 In matching phase, read both relns; $M+N$ I/Os.
- In our running example, this is a total of 4500 I/Os.
- Sort-Merge Join vs. Hash Join:
 - Given a minimum amount of memory, both have a cost of $3(M+N)$ I/Os. Hash Join superior on this count if relation sizes differ greatly (as it wins by needing less memory).
 - Also, Hash Join is neatly parallelizable, as we will see later.
 - Sort-Merge less sensitive to data skew; result is sorted.
“Simple” Hash-Join (see Shapiro!)

- Grace Hash-Join:
 - Partitioning (“build”) does read+write of R and S \([2(M+N)] \)
 - Matching (“probe”) does read of R and S; \(M+N \) \([3(M+N)] \)
 - Q: What if the smaller relation (R) is just *slightly* too big?

- Simple Hash-Join addresses this case:
 - Scan R, using most of memory for a hash table; write overflow part of R to R’ (R’s leftovers) on disk
 - Scan S, probe R’s hash table with “most” of S; write overflow part of S to S’ (S’s leftovers) on disk
 - Repeat (recursively!) to join R’ and S’

- Cost when \(|R| \approx 2B? \) \((M+N) + 2(.5M+.5N) = 2(M+N) \)
Hybrid Hash-Join (see Shapiro!!)

- Grace Hash-Join wins when both tables are very large compared to our memory allocation \(B \). (Big Data? 😊)
- Simple Hash-Join wins when \(R \) almost fits in memory.

Q: What do you do when you have two winners, each with a region of superiority? → “Hybrid” Algorithm!

And thus Hybrid Hash-Join was born…

- Use a portion of \(B \) for an in-memory \(R \) hash table
- Use the rest of \(B \) for Grace-style partition buffering
- Result is that the leftovers are now partitioned!
 - Like Grace HJ when \(B \) is small (if no room for a hash table)
 - Like Simple HJ when \(B \approx |R| + \varepsilon \) (if only one partition is spilled)
Q: More General (θ) Join Conditions?

- Equalities over several attributes (e.g., \(R_.sid = S_.sid \) AND \(R_.rname = S_.sname \)):
 - For Index NL, build index on \(\langle sid, sname \rangle \) (if S is inner); or use existing indexes on \(sid \) or \(sname \).
 - For Sort-Merge and Hash Join, sort or hash-partition on the combination of the two join columns.

- Inequality conditions (e.g., \(R_.rname < S_.sname \)):
 - For Index NL, need (clustered!) B+ tree index.
 - Range scans on inner; # matches likely much higher vs. equijoins.
 - Hash Join, Sort Merge Join simply not applicable.
 - Block NL quite likely to be the best join method here (ditto for other predicates w/non-hashable functions).
So Many Joins, So Little Time...!

- Nested Loops Join:
 - Simple NL-Join
 - Index NL-Join
 - Page NL-Join \(\rightarrow \) Block NL-Join (also works for \(\theta \)-joins!)

- Sort-Merge Join
 - \textit{SM-Join} can avoid sorting \(R \) and/or \(S \) if ordered; can read and merge run sets from \(R \) and \(S \) together during the join

- Hash-Join
 - Grace Hash-Join
 - Simple Hash-Join
 - \textit{Hybrid Hash-Join}