Principles of Data Management

Lecture #11
Relational Operators: Join

Instructor: Chen Li
Schema for Examples

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

- **Reserves:**
 - Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.
 - (Total cardinality is thus 100,000 reservations)

- **Sailors:**
 - Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
 - (Total cardinality is thus 40,000 sailing club members)
Equality Joins With One Join Column

SELECT *
FROM Reserves R1, Sailors S1
WHERE R1.sid=S1.sid

- In algebra: R □ S. Incredibly common! Must thus be carefully optimized. R × S is large; so, doing R × S followed by a selection would be highly inefficient.
 - In our examples, R is Reserves and S is Sailors.
- We will consider more complex join conditions later.
- Cost metric: # of I/Os. (We will ignore output costs.)
Simple Nested Loops Join(s)

```sql
foreach tuple r in R do
  foreach tuple s in S do
    if r_i == s_j then add <r, s> to result
```

- For each **tuple** in the *outer* relation R, we scan the entire *inner* relation S.
 - Cost: \(M + (p_R \times M) \times N = 1000 + (100 \times 1000) \times 500 \text{ I/Os} \)

- Page-oriented Nested Loops join: For each *page* of R, get each *page* of S, and write out matching pairs of tuples \(<r, s>\), where r is in R-page and S is in S-page.
 - Cost: \(M + M \times N = 1000 + 1000 \times 500 \)
 - If smaller relation (S) is outer, cost = 500 + 500*1000
 (Notice that we were essentially wasting an opportunity!)
Block Nested Loops Join

- Use one page as an input buffer for scanning the inner S, one page as the output buffer, and use all remaining pages to hold a “block” of outer R.
 - For each matching tuple r in R-block, s in S-page, add <r, s> to result. Then read next R-block, scan S, etc.
Examples of Block Nested Loops

- Cost: Scan of outer + \(#\text{outer blocks} \times \text{scan of inner}\)
 - \(#\text{outer blocks} = \lfloor \# \text{of pages of outer} / \text{blocksize} \rfloor\)

- With Reserves (R) as outer, and 100-page blocks of R:
 - Cost of scanning R is 1000 I/Os; there’ll be 10 \textit{blocks} total.
 - Per R block, we scan Sailors (S); 10*500 (=5000) I/Os for S.

- With (100-page blocks of) Sailors as outer:
 - Cost of scanning S is 500 I/Os; a total of 5 blocks.
 - Per block of S, we scan Reserves; 5*1000 I/Os for R.

- (With \textit{sequential reads} considered, analysis changes: may want to divide buffers evenly between R and S.)
Index Nested Loops Join

foreach tuple r in R do
 foreach tuple s in S where r_i == s_j do
 add <r, s> to result

- If there is an index on the join column of one relation (say S), can make it the inner and exploit the index.
 - Cost: $M + \left((p_R \times M) \times \text{cost of finding matching S tuples} \right)$

- For each R tuple, cost of probing S’s index is about 1.2 for hash index, and say 2-4 for B+ tree. Cost of fetching actual S tuples (assuming Alt. (2) or (3) for index data entries) depends on clustering.
 - Clustered (s_j) index: 1 I/O per R tuple (typical);
 - Unclustered: 1 I/O per matching S tuple per R tuple.
Examples of Index Nested Loops

- Hash-index (Alt. 2) on sid of Sailors (as inner):
 - Scan Reserves: 1000 page I/Os, 100*1000 (=100,000) tuples.
 - For each Reserves tuple: 1.2 I/Os to get data entry in index, plus 1 I/O to get (the exactly one) matching Sailors tuple. Total: 220,000 I/Os. (Plus 1000 in Reserves “noise”.)

- Hash-index (Alt. 2) on sid of Reserves (as inner):
 - Scan Sailors: 500 page I/Os, 80*500 (=40,000) tuples.
 - For each Sailors tuple: 1.2 I/Os to find index page with data entries, plus cost of retrieving matching Reserves tuples. Assuming uniform distribution, 2.5 reservations per sailor (100,000 / 40,000). Cost of retrieving them is 1 or 2.5 I/Os depending on the index’s clustering setup.
Sort-Merge Join \((R \bowtie S) \)

- Sort R and S on the join column, then scan them to do a “merge” (on join column), and output result tuples.
 - Advance scan of R until current R-tuple \(\geq \) current S tuple, then advance scan of S until current S-tuple \(\geq \) current R tuple; do this until current R tuple = current S tuple.
 - At this point, all R tuples with same value in Ri (current R group) and all S tuples with same value in Sj (current S group) match; output \(<r, s> \) for all pairs of such tuples.
 - Then resume scanning R and S.

- R scanned once; each S group scanned once per matching R tuple. (Multiple scans of an S group very likely to find all needed pages in buffer pool.)
Example of Sort-Merge Join

- Cost: $M \log M + N \log N + (M+N)$
 - The cost of scanning, $M+N$, could be $M*N$ (very unlikely!)
- With 35, 100 or 300 buffer pages, both Reserves and Sailors can be sorted in 2 passes; total join cost: 7500.

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>bid</th>
<th>day</th>
<th>rname</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>103</td>
<td>12/4/96</td>
<td>guppy</td>
</tr>
<tr>
<td>28</td>
<td>103</td>
<td>11/3/96</td>
<td>yuppy</td>
</tr>
<tr>
<td>31</td>
<td>101</td>
<td>10/10/96</td>
<td>dustin</td>
</tr>
<tr>
<td>31</td>
<td>102</td>
<td>10/12/96</td>
<td>lubber</td>
</tr>
<tr>
<td>31</td>
<td>101</td>
<td>10/11/96</td>
<td>lubber</td>
</tr>
<tr>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
<td>dustin</td>
</tr>
</tbody>
</table>
Refinement of Sort-Merge Join

- We can combine the merging phases in the *sorting* of R and S with the merging required for the join.
 - With \(B > \sqrt{L} \), where \(L \) is the size of the larger relation, using the sorting refinement that produces runs of length \(2B \) in Pass 0, # runs of each relation will be < \(B/2 \).
 - Allocate 1 page per run of each relation, and do a parallel `merge` while checking the join condition. (Else wasteful!)
 - Cost: read+write each relation in Pass 0 + read each relation in (only) merging pass (+ writing of result tuples).
 - In prior example, cost goes down from 7500 to 4500 I/Os.
- With large memory, the cost of sort-merge join, like the cost of external sorting, behaves like it’s *linear*.
Sort-Merge Refinement (cont.)

First create sorted runs for each table (S & R).....

First create sorted runs for each table (S & R).....!

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>dustin</td>
<td>7</td>
<td>45.0</td>
</tr>
<tr>
<td>44</td>
<td>guppy</td>
<td>5</td>
<td>35.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>sname</th>
<th>rating</th>
<th>age</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>yuppy</td>
<td>9</td>
<td>35.0</td>
</tr>
<tr>
<td>31</td>
<td>lubber</td>
<td>8</td>
<td>55.5</td>
</tr>
<tr>
<td>58</td>
<td>rusty</td>
<td>10</td>
<td>35.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>bid</th>
<th>day</th>
<th>rname</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>103</td>
<td>12/4/96</td>
<td>guppy</td>
</tr>
<tr>
<td>31</td>
<td>102</td>
<td>10/12/96</td>
<td>lubber</td>
</tr>
<tr>
<td>31</td>
<td>101</td>
<td>10/11/96</td>
<td>lubber</td>
</tr>
<tr>
<td>58</td>
<td>103</td>
<td>11/12/96</td>
<td>dustin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>bid</th>
<th>day</th>
<th>rname</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>103</td>
<td>11/3/96</td>
<td>yuppy</td>
</tr>
<tr>
<td>31</td>
<td>101</td>
<td>10/10/96</td>
<td>dustin</td>
</tr>
</tbody>
</table>

..... then merge S & R runs at the same time as joining them...!
Grace Hash-Join

- Partition both of the relations using a hash function \(h \): R tuples in R’s partition \(i \) will only match S tuples in S’s partition \(i \).

- Read in one partition of R, hashing it using function \(h2 \) (\(<> h \)). Scan the matching partition of S, search for its R matches.
Observations on Grace Hash-Join

- #partitions $k \leq B-1$ (why?), and $B-2 \geq$ size of largest partition to be held in memory. Assuming uniformly sized partitions, and maximizing k, we get:
 - $k = B-1$, and $M/(B-1) \leq B-2$, i.e., B must be $\geq \sqrt{M}$

- If we build an in-memory hash table to speed up the matching of tuples, a little more memory is needed.

- If the hash function does not partition uniformly, one or more R partitions may not fit in memory. Can try hash-join technique **recursively** to do the join of such an R-partition with its corresponding S-partition.
Cost of Grace Hash-Join

- In partitioning phase, read+write both relns; $2(M+N)$. In matching phase, read both relns; $M+N$ I/Os.
- In our running example, this is a total of 4500 I/Os.
- Sort-Merge Join vs. Hash Join:
 - Given a minimum amount of memory, both have a cost of $3(M+N)$ I/Os. Hash Join superior on this count if relation sizes differ greatly (as it wins by needing less memory). Also, Hash Join is neatly parallelizable, as we will see later.
 - Sort-Merge less sensitive to data skew; result is sorted.
“Simple” Hash-Join (see Shapiro!)

- Grace Hash-Join:
 - Partitioning (“build”) does read+write of R and S \[2(M+N)\]
 - Matching (“probe”) does read of R and S; \[M+N \times 3(M+N)\]
 - Q: What if the smaller relation (R) is just *slightly* too big?

- Simple Hash-Join addresses this case:
 - Scan R, using most of memory for a hash table; write overflow part of R to R’ (R’s leftovers) on disk
 - Scan S, probe R’s hash table with “most” of S; write overflow part of S to S’ (S’s leftovers) on disk
 - Repeat (recursively!) to join R’ and S’
 - Q: How to know what to postpone? A: Hashing!!
 - Cost when \(|R| \approx 2B? \ [(M+N) + 2(.5M+.5N) = 2(M+N)]\]
Hybrid Hash-Join (see Shapiro!!)

- Grace Hash-Join wins when both tables are very large compared to our memory allocation B. (Big Data? 😊)
- Simple Hash-Join wins when R almost fits in memory.
 Q: What do you do when you have two winners, each with a region of superiority? → “Hybrid” Algorithm!
- And thus Hybrid Hash-Join was born…
 - Use a portion of B for an in-memory R hash table
 - Use the rest of B for Grace-style partition buffering
 - Result is that the leftovers are now partitioned!
 - Like Grace HJ when B is small (if no room for a hash table)
 - Like Simple HJ when $B \approx |R| + \varepsilon$ (if only one partition is spilled)
Q: More General (\(\theta \)) Join Conditions?

- **Equalities over several attributes** (e.g., \(R.\text{sid}=S.\text{sid} \) AND \(R.\text{rname}=S.\text{sname} \)):
 - For Index NL, build index on \(<\text{sid}, \text{sname}>\) (if S is inner); or use existing indexes on \(\text{sid}\) or \(\text{sname}\).
 - For Sort-Merge and Hash Join, sort or hash-partition on the combination of the two join columns.

- **Inequality conditions** (e.g., \(R.\text{rname} < S.\text{sname} \)):
 - For Index NL, need (clustered!) B+ tree index.
 - Range scans on inner; # matches likely much higher vs. equijoins
 - Hash Join, Sort Merge Join simply not applicable.
 - Block NL quite likely to be the best join method here (ditto for other predicates w/non-hashable functions)
So Many Joins, So Little Time...!

- Nested Loops Join:
 - Simple NL-Join
 - Index NL-Join
 - Page NL-Join → **Block NL-Join** (also works for θ-joins!)

- Sort-Merge Join
 - **SM-Join** can avoid sorting R and/or S if ordered; can read and merge run sets from R and S together during the join

- Hash-Join
 - Grace Hash-Join
 - Simple Hash-Join
 - **Hybrid Hash-Join**