Introduction to Data Management

Lecture #8
(Relational Design Theory, cont.)

Instructor: Mike Carey
mjcarey@ics.uci.edu

Announcements

- Homework stuff
 - HW #2 is due this Friday (before class)
 - HW #3 will be similarly due the following Friday
- Exam stuff (time flies!)
 - Midterm #1 is a week from next Monday (in class)!
 - We’ll use assigned seating (more info next week), so you’ll want to show up a bit early to get settled in
 - An 8.5”x11” 2-sided cheat sheet will be permitted
- Today’s plan:
 - Relational DB design theory (II)
 - Disclaimer: Still not the most exciting CS122A topic… 😊
Reasoning About FDs (Review)

Let’s consider \(R(ABCDE), F = \{A \rightarrow B, B \rightarrow C, CD \rightarrow E\} \)

- Let’s work our way towards inferring \(F^+ \) ...

 (a) \(A \rightarrow B \) (b) \(B \rightarrow C \) (c) \(CD \rightarrow E \) (given)

 (d) \(A \rightarrow C \) (a, b, and transitivity)

 (e) \(BD \rightarrow CD \) (b and augmentation)

 (f) \(BD \rightarrow E \) (e, c and transitivity)

 (g) \(AD \rightarrow CD \) (d and augmentation)

 (h) \(AD \rightarrow E \) (g, c and transitivity)

 (i) \(AD \rightarrow C \) (j) \(AD \rightarrow D \) (g and decomposition)

 (k) \(AD \rightarrow BD \) (a and augmentation)

 (l) \(AD \rightarrow B \) (k and decomposition)

 (m) \(AD \rightarrow A \) (a and reflexivity)

 (n) \(AD \rightarrow ABCDE \) (h, i, j, l, m, and union)

Candidate key!

Note: If some attribute \(X \) is not on the RHS of any initial FD, then \(X \) must be part of the key!

Reasoning About FDs (Cont’d.)

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # attrs!)
- Typically, we just want to check if a given FD \(X \rightarrow Y \) is in the closure of a set of FDs \(F \). An efficient check:

 - First compute attribute closure of \(X \) (denoted \(X^+ \)) w.r.t. \(F \):
 - Set of all attributes \(A \) such that \(X \rightarrow A \) is in \(F^+ \) (i.e., all \(F^+ \) attributes)
 - There is a linear time algorithm to compute this (look here): start with \(X \) and keep adding attributes that can be inferred via the FDs.

 - Then check to see if \(Y \) is in \(X^+ \)

- Does \(F = \{A \rightarrow B, B \rightarrow C, CD \rightarrow E\} \) imply \(A \rightarrow E? \)

 - I.e.: Is \(A \rightarrow E \) in the closure \(F^+ \)? Equivalently: Is \(E \) in \(A^+ \)?
FDs & Redundancy

- Role of FDs in detecting redundancy in a schema:
 - Consider a relation R with 3 attributes, ABC.
 - If **no** (non-trivial) FDs hold: There is no redundancy here then. (Think about this – in fact, think hard...!)
 - Ex: Prescriptions(doc_name, patient_name, drug_name)
 - Given A → B: Several tuples could have the same A value – and if so, then they’ll all have the same B value as well! (Thus if A is repeated for some reason, it will always have the same B “tagging along for the ride”.)
 - Ex: Employee(emp_name, dept_no, mgr_name)
 if dept_no → mgr_name

Normal Forms

- Returning to the issue of schema refinement, the first question to ask is whether any refinement is needed!
- We will define various **normal forms** (BCNF, 3NF etc.) based on the nature of FDs that hold
- Depending upon the normal form a relation is in, it has different level of redundancy
 - E.g., a BCNF relation has NO redundancy – clearer soon!
- Checking for which normal form a relation is in will help us decide whether to decompose the relation
 - E.g., no point in decomposing a BCNF relation!
Some Terms and Definitions (Review)

- If X is part of a (candidate) key, we will say that X is a **prime attribute**.
- If X (an attribute set) contains a candidate key, we will say that X is a **superkey**.
- X \(\rightarrow\) Y can be pronounced as “**X determines Y**”, or “Y is **functionally dependent on X**”.
- Some types of dependencies (on a key):
 - **Trivial**: XY \(\rightarrow\) X
 - **Partial**: XY is a key, X \(\rightarrow\) Z
 - **Transitive**: X \(\rightarrow\) Y, Y \(\rightarrow\) Z, Y is non-prime, X \(\rightarrow\) Z
First Normal Form (1NF)

- Rel’n R is in 1NF if all of its attributes are atomic.
 - No set-valued attributes! (1NF = “flat”)
 - Usually goes w/o saying for relational model (but not for NoSQL systems, as we’ll see at the end of the quarter).
 - Ex:

```
<table>
<thead>
<tr>
<th>bname</th>
<th>color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interlake</td>
<td>blue, red</td>
</tr>
<tr>
<td>Clipper</td>
<td>green</td>
</tr>
<tr>
<td>Marine</td>
<td>red</td>
</tr>
</tbody>
</table>
```

(1NF is different than the other normal forms.)

Second Normal Form (2NF)

- Rel’n R is in 2NF if it is in 1NF and no non-prime attribute is partially dependent on a candidate key of R.
- Ex: Supplies(sno, sname, saddr, pno, pname, pcolor)
 where: sno → sname, sno → saddr, pno → pname, pno → pcolor

Q1: What are the candidate keys for Supplies?
Q2: What are the prime attributes for Supplies?
Q3: Why is Supplies not in 2NF?
Q4: What’s the fix?

Supplier(sno, sname, saddr)
Part(pno, pname, pcolor)
Supply(sno, pno)

Must not forget this!
(Else “lossy join”!!)
Third Normal Form (3NF)

- Rel’n R is in 3NF if it is in 2NF and it has no transitive dependencies to non-prime attributes.

- Ex: Workers(eno, ename, esal, dno, dname, dfloor)
 where: eno→ename, eno→esal, eno→dno, dno→dname, dno→dfloor

Q1: What are the candidate keys for Workers?
Q2: What are the prime attributes for Workers?
Q3: Why is Workers not in 3NF?
Q4: What’s the fix?

Emp(eno, ename, esal, dno)
Dept(dno, dname, dfloor)

A1: eno
A2: eno
A3: Two inferable FDs, eno→dname and eno→dfloor, each violate 3NF.

Note: A lossless-join, dependency-preserving decomposition of R into a collection of 3NF relations is always possible.

Don’t forget this! (Else “lossy join” !!)