Announcements

- Homework stuff
 - HW #1 is now graded
 - HW #3 is due on Friday
 - HW #4 will come out on Monday (after the exam)

- Exam stuff (time flies!)
 - Midterm #1 is next Monday (in class)
 - We’ll use assigned seating – come early!
 - You may bring an 8.5”x11” (2-sided) cheat sheet

- Today’s plan:
 - Relational DB design theory (IV & Final!)
 - Good news: This should really be the end!...😊
Reminder: Normal Forms

![Diagram showing normal forms](image.png)

Dependency Preserving Decomp. (Review)

- The decomposition of R into two tables X and Y is **dependency preserving** if \((F_X \cup F_Y)^+ = F^+\)
 - I.e., if we consider only dependencies in the closure \(F^+\) that can be checked in X **without** considering Y, and in Y **without** considering X, they **imply** all dependencies in \(F^+\)!

- Important to consider \(F^+\), not \(F\), in this definition:
 - **Ex:** EmpDeptMix(eid, email, ename, did, dname) with
 - \(eid \rightarrow email, email \rightarrow eid, eid \rightarrow ename, email \rightarrow did, did \rightarrow dname\)
 - Emp(eid, email, ename) - \(eid \rightarrow email, email \rightarrow eid, eid \rightarrow ename\)
 - Dept(did, dname) - \(did \rightarrow dname\)
 - Work(eid, did) - \(eid \rightarrow did\) (instead of \(email \rightarrow did\))

- Dependency preserving does **not** imply lossless join:
 - **Ex:** ABC with A \(\rightarrow\) B, if decomposed into AB and BC. (Q: Key?)
Deconstructing a Design into BCNF

- Consider a relation R with FDs F. If $X \rightarrow Y$ violates BCNF, decompose R into $R - Y$ and XY. ($R - Y$ has X still!)
 - Repeated application of this idea will yield a collection of relations that are BCNF, a lossless join decomposition, and guaranteed to terminate. (Didn't say dependency preserving...)

- Ex: $CSJDPQV$ with $C \rightarrow CSJDPQV$, $JP \rightarrow C$, $SD \rightarrow P$, and $J \rightarrow S$.
 - To deal with $SD \rightarrow P$, decompose into SDP, $CSJDVQ$.
 - To deal with $J \rightarrow S$, decompose $CSJDVQ$ into JS and $CJDQV$.

- Note that in general, several of the dependencies may cause violations of BCNF. (And the order in which we process them can lead to different decompositions … only some of which may be dependency preserving!)

BCNF and Dependency Preservation

- In general, there simply may not be a dependency preserving decomposition into BCNF.
 - E.g., $R(CSZ)$ with $CS \rightarrow Z$, $Z \rightarrow C$.
 - Can't decompose preserving the first FD; not in BCNF...

- Consider again decomposing the relation $CSJDPQV$ into relations SDP, JS and $CJDQV$:
 - Not dependency preserving (w.r.t. $JP \rightarrow C$, $SD \rightarrow P$, $J \rightarrow S$).
 - However, it is indeed a lossless join decomposition.
 - In this case, adding JPC to the collection of relations would give us a dependency preserving decomposition. (Overkill!)
 - But: JPC data would be used only for FD checking! (Redundancy!)
Decomposition into 3NF

- The lossless join decomposition algorithm for BCNF can also be used to obtain a lossless join decomposition into 3NF (and might stop earlier).

- One idea to ensure dependency preservation:
 - If $X \rightarrow Y$ is not preserved in the BCNF decomposition, add relation XY.
 - Problem is that XY may violate 3NF (or even 2NF), so this approach won’t work in general.

- The real fix: Instead of using the given set of FDs F to guide the decomposition, use a minimal cover for F.

Minimal Cover for a Set of FDs

- **Minimal cover** G for a set of FDs F such that:
 - Closure of $G = \text{closure of } F$, i.e., $G^+ = F^+$.
 - Right hand side (RHS) of each FD in G is a single attribute.
 - If we change G by deleting any FD or deleting attributes from the LHS of any FD in G, the closure would change.

- Intuitively: Every FD in G is needed, with G as “as small as possible” to have the same closure as F.

- E.g., $A \rightarrow B$, $ABCD \rightarrow E$, $EF \rightarrow GH$, $ACDF \rightarrow EG$ has the following minimal cover:
 - $A \rightarrow B$, $ACD \rightarrow E$, $EF \rightarrow G$ and $EF \rightarrow H$

- $M.C. \rightarrow \text{lossless-join, dep. pres. 3NF decomposition!}$
Computing the Minimal Cover

1. Put the set of given FDs in a Standard Form.
 - This turns F into a set G of equivalent FDs with a single attribute on the right-hand side.
2. Minimize the left-hand side of each FD in G.
 - For each FD in G, check each LHS attribute to see if it can be deleted without breaking the equivalence G+ = F+.
3. Delete redundant FDs.
 - For any FDs that remain, check to see if it can be deleted without breaking the equivalence G+ = F+.

And voila – you now have a minimal cover for F…!

Obtaining that 3NF Decomposition

I. Compute the minimal cover G (which is also sometimes denoted as F-).
II. Search for dependencies in F- that have the same attribute set on their left hand side, α:
 a. α → Y1, α → Y2, α → Yk
 b. Construct one relation as (α, Y1, Y2, ... Yk)
 c. Repeat this process for all of the FDs’ α’s
 d. If none of the relations from above contains a candidate key for the original relation R, add one more relation with (just) the attributes of a candidate key for R.

(Q: Why...?)
Testing Your Understanding…

- Now that you now how to compute BCNF and 3NF decompositions, try it on our earlier examples!
 - ≠2NF: Supplies(sno, sname, saddr, pno, pname, pcolor)
 \(\text{with: } \text{sno} \rightarrow \text{sname}, \text{sno} \rightarrow \text{saddr}, \text{pno} \rightarrow \text{pname}, \text{pno} \rightarrow \text{pcolor}\)
 - ≠3NF: Workers(eno, ename, esal, dno, dname, dfloor)
 \(\text{with: } \text{eno} \rightarrow \text{ename}, \text{eno,ename} \rightarrow \text{esal}, \text{eno} \rightarrow \text{dno}, \text{dno} \rightarrow \text{dname,dfloor}\)
 - ≠BCNF: Supply2(sno, sname, pno)
 \(\text{with: } \text{sno} \rightarrow \text{sname}, \text{sname} \rightarrow \text{sno}\)

Note: I changed the ≠3NF example’s FDs to be equivalent to our earlier FDs but messier to better illustrate the nature of the minimal cover algorithm’s operation.

Testing Your Understanding (cont.)…

- ≠3NF:

 Workers(eno, ename, esal, dno, dname, dfloor)
 \(\text{with: } \text{eno} \rightarrow \text{ename}, \text{eno,ename} \rightarrow \text{esal}, \text{eno} \rightarrow \text{dno}, \text{dno} \rightarrow \text{dname,dfloor}\)

 3NF M.C. step 1:
 - eno \rightarrow ename
 - eno,ename \rightarrow esal
 - eno \rightarrow dno
 - dno \rightarrow dname
 - dno \rightarrow dfloor

 3NF M.C. step 2:
 - eno \rightarrow ename
 - eno,ename \rightarrow esal
 - eno \rightarrow esal
 - eno \rightarrow dno
 - dno \rightarrow dname
 - dno \rightarrow dfloor

 Q1: What is the attribute closure of eno – and what does that mean...?

 We got lucky!
 No lossy join!

 Q2: What if the Emp-Dept relationship had been M:N?
Testing Your Understanding (cont.)...

✓ ≠ 3NF:

Workers(eno, ename, esal, dno, dname, dfloor)
with: eno → ename, eno, ename → esal, eno → dno, dno → dname, dfloor

eno → ename
eno, ename → esal → eno → esal
eno → dno
{eno}
dno → dname
{eno, ename}
dno → dfloor
{eno, ename, esal}
{eno, ename, esal, dno}
{eno, ename, esal, dno, dname}
{eno, ename, esal, dno, dname, dfloor}

→ That’s everything in Workers! (Therefore…?)

Q1: What is the attribute closure of eno – and what does that mean…?

Testing Your Understanding (cont.)...

✓ ≠ 3NF:

Workers(eno, ename, esal, dno, dname, dfloor)
with: eno → ename, eno, ename → esal, eno → dno, dno → dname, dfloor

eno → ename
eno, ename → esal → eno → esal
eno → dno
Emp(eno, ename, esal, dno)
dno → dname
Dept(dno, dname, dfloor)
dno → dfloor
Works(eno, dno)

Q2: What if the Emp-Dept relationship had been M:N?

Else we’d have a lossy join…!
Relational Design Theory Summary

- If a relation is in **BCNF**, it is free of redundancies that can be detected using FDs. (Trying to ensure that all relations are in BCNF is thus a good goal.)
- If a relation is not in BCNF, we can decompose it into a lossless-join collection of BCNF relations.
 - Are all FDs preserved? If a lossless-join, dependency-preserving decomposition into BCNF is not possible (or is unsuitable for typical queries), consider **3NF** instead.
 - Note: Decompositions should be carried out while also keeping *performance requirements* in mind. (More later!)

On Refining ER Based Designs

- 1st diagram translated:
 - Workers(S,N,L,D,S)
 - Departments(D,M,B)
 - Lots associated with workers.
 - *Suppose all workers in a dept are assigned the same lot:* $D \rightarrow L$
- Redundancy; fixed by:
 - Workers2(S,N,D,S)
 - WorkersLots(D,L)
 - Departments(D,M,B)
- Can further fine-tune this:
 - Workers2(S,N,D,S)
 - Departments(D,M,B,L)

Notice: Lot wasn’t really a “Worker attribute”!

PS: On Refining ER Based Designs

- 1st diagram translated:

 Workers(S,N,L,D,S)
 Departments(D,M,B)
 • Lots associated with workers.

 Suppose all workers in a dept are assigned the same lot: D à L

 Redundancy; fixed by:

 Workers2(S,N,D,S)
 WorkersLots(D,L)
 Departments(D,M,B)

 Can further fine-tune this:

 Workers2(S,N,D,S)
 Departments(D,M,B,L)

Note:
In many cases the relational translation of an ER design will take you right to 3NF (and BCNF)…!

- Entity key à attributes for entity sets.
- Relationship key à attributes for relationship sets.

(But problems could arise with FDs within attributes.)

Questions…?