Introduction to Data Management

Lecture #1
(The Course “Trailer”)

Instructor: Mike Carey
mjcarey@ics.uci.edu
Today’s Topics

- Welcome to my (tie for) biggest class ever!
- Read (and live by!) the course wiki page:
- Also follow (and live by) the Piazza page:
 - https://piazza.com/uci/spring2019/cs122a/home
- Let’s peek at the wiki page, and then lets also preview what lies ahead...
- **Note:** There will be a quiz in this week’s initial discussion sessions...!
 - **Note:** You must attend the session you registered for.

What is a Database System?

- What’s a database?
 - A very large, integrated collection of data
- Usually a model of a real-world enterprise
 - **Entities** (e.g., students, courses, Facebook users, ...) with attributes (e.g., name, birthdate, GPA, ...)
 - **Relationships** (e.g., Susan is taking CS 234, Susan is a friend of Lynn, ...)
- What’s a database management system (DBMS)?
 - A software system designed to store, manage, and provide access to one or more databases
File Systems vs. DBMS

- Application programs must sometimes stage large datasets between main memory and secondary storage (for buffering huge data sets, getting page-oriented access, etc.)
- Special code needed for different queries, and that code must be (stay) correct and efficient
- Must protect data from inconsistency due to multiple concurrent users
- Crash recovery is important since data is now the currency of the day (corporate jewels)
- Security and access control are also important(!)

Evolution of DBMS

- Manual Coding
 - Byte streams
 - Majority of application development effort goes towards building and then maintaining data access logic

- CODASYL/IMS
 - Early DBMS Technologies
 - Records and pointers
 - Large, carefully tuned data access programs that have dependencies on physical access paths, indexes, etc.

- Relational
 - Declarative approach
 - Tables and views bring "data independence"
 - Details left to system
 - Designed to simplify data-centric application development
Why Use a DBMS?

- Data independence.
- Efficient data access.
- Reduced application development time.
- Data integrity and security.
- Uniform data administration.
- Concurrent access, recovery from crashes.

Why Study Databases?

- Shift from computation to information
 - At the “low end”: explosion of the web (a mess!)
 - At the “high end”: scientific applications, social data analytics, …
- Datasets increasing in diversity and volume
 - Digital libraries, interactive video, Human Genome project, EOS project, the Web itself, …
 - Mobile devices, Internet of Things, …
 - ... need for DBMS exploding!
- DBMS field encompasses most of CS!!
 - OS, languages, theory, AI, multimedia, logic, …
Why Study Databases (Really)?

Big Data! 😊

To Be Continued...