Announcements

- **Homework stuff**
 - HW #2 is due this Friday before class
 - HW #3 will be due the following **Wednesday**
- **Exam stuff (time flies!)**
 - Midterm #1 is a week from Friday (**in class**)
 - We’ll use assigned seating (more info next week), so you’ll want to try and show up early to get settled in
 - An 8.5”x11” 2-sided cheat sheet will be permitted
- **Today’s plan:**
 - Relational DB design theory (**II**)
 - **Disclaimer:** Still not the most exciting CS122A topic… 😊
Reasoning About FDs (Examples)

Let’s consider \(R(ABCDE) \), \(F = \{ A \to B, B \to C, CD \to E \} \):

- Let’s work our way towards inferring \(F^+ \) ...

 (a) \(A \to B \)

 (b) \(B \to C \)

 (c) \(CD \to E \) \(\text{(given)} \)

 (d) \(A \to C \) \(\text{(a, b, and transitivity)} \)

 (e) \(BD \to CD \) \(\text{(b and augmentation)} \)

 (f) \(BD \to E \) \(\text{(e, c and transitivity)} \)

 (g) \(AD \to CD \) \(\text{(d and augmentation)} \)

 (h) \(AD \to E \) \(\text{(g, c and transitivity)} \)

 (i) \(AD \to C \) \(\text{(g and decomposition)} \)

 (j) \(AD \to D \) \(\text{(g and decomposition)} \)

 (k) \(AD \to BD \) \(\text{(a and augmentation)} \)

 (l) \(AD \to B \) \(\text{(k and decomposition)} \)

 (m) \(AD \to A \) \(\text{(a and reflexivity)} \)

 (n) \(AD \to ABCDE \) \(\text{(h, i, j, l, m, and union)} \) \(\text{Candidate key!} \)

\[\text{Note: If some attribute X is not on the RHS of any initial FD, then X must be part of the key!} \]

Reasoning About FDs (Cont’d.)

- Computing the closure of a set of FDs can be expensive. (Size of closure is exponential in # attrs!)
- Typically, we just want to check if a given FD \(X \to Y \) is in the closure of a set of FDs \(F \). An efficient check:

 - First compute attribute closure of \(X \) (denoted \(X^+ \)) w.r.t. \(F \):

 - Set of all attributes \(A \) such that \(X \to A \) is in \(F^+ \) (i.e., all \(F^+ \) attributes)

 - There is a linear time algorithm to compute this: start with \(X \) and keep adding attributes that can be inferred via the FDs.

 - Then check to see if \(Y \) is in \(X^+ \)

- \(F = \{ A \to B, B \to C, CD \to E \} \) imply \(A \to E \)?

 - I.e.: Is \(A \to E \) in the closure \(F^+ \)? Equivalently: Is \(E \) in \(A^+ \)?
FDs & Redundancy

- Role of FDs in detecting redundancy in a schema:
 - Consider a relation R with 3 attributes, ABC.
 - **If no (non-trivial) FDs hold:** There is no redundancy here then. (Think about this – in fact, think hard...!)
 - **Given A → B:** Several tuples could have the same A value – and if so, then they’ll all have the same B value as well! (Thus if A is repeated for some reason, it will always have the same B “tagging along for the ride”.)

Normal Forms

- Returning to the issue of schema refinement, the first question to ask is whether any refinement is needed!
- We will define various normal forms (BCNF, 3NF etc.) based on the nature of FDs that hold
- Depending upon the normal form a relation is in, it has different level of redundancy
 - E.g., a BCNF relation has NO redundancy – clearer soon!
- Checking for which normal form a relation is in will help us decide whether to decompose the relation
 - E.g., no point in decomposing a BCNF relation!
Normal Forms

Some Terms and Definitions (Review)

- If X is part of a (candidate) key, we will say that X is a prime attribute.
- If X (an attribute set) contains a candidate key, we will say that X is a superkey.
- X → Y can be pronounced as “X determines Y”, or “Y is functionally dependent on X”.
- Some types of dependencies (on a key):
 - **Trivial**: XY → X
 - **Partial**: XY is a key, X → Z
 - **Transitive**: X → Y, Y → Z, Y is non-prime, X → Z
First Normal Form (1NF)

- Rel’n R is in 1NF if all of its attributes are atomic.
 - No set-valued attributes! (1NF = “flat” 😊)
 - Usually goes w/o saying for relational model (but not for NoSQL systems, as we’ll see at the end of the quarter 😌).
 - Ex:

<table>
<thead>
<tr>
<th>bname</th>
<th>color</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interlake</td>
<td>blue, red</td>
</tr>
<tr>
<td>Clipper</td>
<td>green</td>
</tr>
<tr>
<td>Marine</td>
<td>red</td>
</tr>
</tbody>
</table>

Second Normal Form (2NF)

- Rel’n R is in 2NF if it is in 1NF and no non-prime attribute is partially dependent on a candidate key of R.
- Ex: Supplies(sno, sname, saddr, pno, pname, pcolor)
 where: sno → sname, sno → saddr, pno → pname, pno → pcolor

Q1: What are the candidate keys for Supplies?
Q2: What are the prime attributes for Supplies?
Q3: Why is Supplies not in 2NF?
Q4: What’s the fix?

Supplier(sno, sname, saddr)
Part(pno, pname, pcolor)
Supply(sno, pno)

A1: (sno, pno)
A2: sno, pno
A3: Each of its four FDs violates 2NF!

Must not forget this!
(Else “lossy join”!!)