Introduction to Data Management

Lecture #6
(E-R Design Wrapup,
Relational DB Design Theory)

Instructor: Mike Carey
mjcarey@ics.uci.edu

Announcements

- HW#2 is still underway...!
 - Based on our provided HW #1 solution
- Today’s plan:
 - Final chapter of E-R → Relational translation
 - More (hopefully) clarifying examples and Q&A
 - Start on relational DB design theory (if time)
- This week’s discussion sessions will...
 - Start out with a quick E-R quiz
 - Move on to Q&A about HW #1’s solution
 - Also time for MySQL installation Q&A
 - Please take note of the new attendance restriction... (😊)
Review: Putting The Basics Together

CREATE TABLE Customer (cid INTEGER,
 cname VARCHAR(50),
 login VARCHAR(20)
 NOT NULL,
 PRIMARY KEY (cid),
 UNIQUE (login))

CREATE TABLE Product (sku INTEGER,
 pname VARCHAR(100),
 color VARCHAR(20),
 listprice DECIMAL(8,2),
 PRIMARY KEY (sku))

CREATE TABLE Order (oid INTEGER,
 custid INTEGER,
 shipto VARCHAR(200),
 total DECIMAL(8,2),
 PRIMARY KEY (oid),
 FOREIGN KEY (custid) REFERENCES Customer)

CREATE TABLE LineItem (oid INTEGER,
 lno INTEGER,
 price DECIMAL(8,2),
 qty INTEGER,
 sku INTEGER,
 PRIMARY KEY (oid, lno),
 FOREIGN KEY (oid) REFERENCES Order
 ON DELETE CASCADE,
 FOREIGN KEY (sku) REFERENCES Product)
Review: Putting It Together (Cont’d.)

<table>
<thead>
<tr>
<th>Customer</th>
<th>cid</th>
<th>cname</th>
<th>login</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>Smith, James</td>
<td>jsmith@aol.com</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>White, Susan</td>
<td>suzie@gmail.com</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Smith, James</td>
<td>js@hotmail.com</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product</th>
<th>sku</th>
<th>pname</th>
<th>color</th>
<th>listprice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>123</td>
<td>Frozen DVD</td>
<td>null</td>
<td>24.95</td>
</tr>
<tr>
<td></td>
<td>456</td>
<td>Graco Twin Stroller</td>
<td>green</td>
<td>199.99</td>
</tr>
<tr>
<td></td>
<td>789</td>
<td>Moen Kitchen Sink</td>
<td>black</td>
<td>350.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Order</th>
<th>oid</th>
<th>custid</th>
<th>shipto</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>J. Smith, 1 Main St., USA</td>
<td>199.95</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>Mrs. Smith, 3 State St., USA</td>
<td>300.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LineItem</th>
<th>oid</th>
<th>lno</th>
<th>price</th>
<th>qty</th>
<th>item</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>169.95</td>
<td>1</td>
<td>456</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>15.00</td>
<td>2</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>300.00</td>
<td>1</td>
<td>789</td>
</tr>
</tbody>
</table>

ISA Mapping Revisited

- As in Java or other PLs, attributes are inherited
- If we declare A ISA B, then every A entity is also considered to be a B entity instance.

- Overlap constraints: Can Joe be both an Hourly_Emps as well as a Contract_Emps instance? (Allowed/disallowed)
- Covering constraints: Must every Employees entity also be either an Hourly_Emps or a Contract_Emps entity? (Yes/no)
ISA Hierarchy Translation Options

I. “Delta table” approach:
- Emps(ssn, name, lot) ← (All Emps partly reside here)
- Hourly_Emps(ssn, wages, hrs_worked)
- Contract_Emps(ssn, contractid)

II. “Union of tables” approach:
- Emps(ssn, name, lot)
- Hourly_Emps(ssn, name, lot, wages, hrs_worked)
- Contract_Emps(ssn, name, lot, contractid)

III. “Mashup table” approach:
- Emps(kind, ssn, name, lot, wages, hrs_worked, contractid)

Things to consider:
- Expected queries?
- PK/unique constraints?
- Relationships/FKs?
- Overlap constraints?
- Space/time tradeoffs?

ISA Considerations (cont’d.)

- Query convenience
 - Ex: List the names of all Emps in lot 12A
- PK enforcement
 - Ex: Make sure that ssn is unique for all Emps
- Relationship targets
 - Ex: Lawyers table REFERENCES Contract_Emps
- Handling of overlap constraints
 - Ex: Sally is under a contract for her hourly work
- Space and query performance tradeoffs
 - Ex: List all the info about hourly employee 123
 - Ex: What if most employees are “just plain employees”?
Mapping Advanced ER Features

- Multi-valued (vs. single-valued) attributes
 - Employees
 - phone
 - name
 - ssn

- Derived (vs. base/stored) attributes
 - Employees
 - bdate
 - name
 - ssn
 - age

- Composite (vs. atomic) attributes
 - Employees_phones
 - (ssn, phone)

 - Employees
 - ssn
 - name
 - address
 - snum
 - street
 - city
 - zip

Employees(ssn, name, address_snum, address_street, address_city, address_zip)

Employees_phones (ssn, phone)
 - ssn is an FK in this table
 - (ssn, phone) is its PK

SQL Views (and Security)

- A view is just a relation, but we store its definition rather than storing the (materialized) set of tuples.

 CREATE VIEW YoungActiveStudents (name, grade) AS
 SELECT S.name, E.grade
 FROM Students S, Enrolled E
 WHERE S.sid = E.sid and S.age < 21

- Views can be used to present needed information while hiding details of underlying table(s).
 - Given YoungStudents (but not Students or Enrolled), we can see (young) students S who have are enrolled but not see the cid's of their courses.
Other view uses in our ER translation context might include:
- Derived attributes, e.g., age (vs. birthdate)
- Simplifying/eliminating join paths (for SQL)
- Beautifying the “Mashup table” approach (to ISA)

```sql
CREATE VIEW EmployeeView (ssn, name, bdate, age)
AS SELECT E.ssn, E.name, E.bdate,
TIMESTAMPDIFF(YEAR, E.bdate, CURDATE())
FROM Employees E
```

Relational model: a tabular representation of data.
- Simple and intuitive, also widely used.
- Integrity constraints can be specified by the DBA based on application semantics. DBMS then checks for violations.
 - Two important ICs: Primary and foreign keys (PKs, FKs).
 - In addition, we always have domain constraints.
- Powerful and natural query languages exist (soon!)
- Rules to translate E-R to relational model
 - Can be done by a human, or automatically (using a tool)
Any Lingering Questions?