Announcements

- HW and exams:
 - HW #3 in progress (shorter than HW #1, #2)
 - Midterm Exam 1 in one week (at this time)
- Today’s plan:
 - Relational DB design theory, Episode 3
 - Relational query languages, Episode 1
 - This week’s evening discussion session plan is
 - Relational DB design quiz/discussion
 - Q&A about our given HW #2 solution
 - (All at your scheduled time and place 😊)
Dependency Preserving Decomposition

- Consider CSJDQV, C is key, JP → C and SD → P.
 - BCNF decomposition: CSJDQV and SDP.
 - Problem: Checking JP → C requires a join!
- **Dependency preserving decomposition** (intuitive):
 - If R is decomposed into X, Y and Z, and we enforce the FDs that hold on X, and on Z, then all FDs that were given to hold also hold. *(Avoids Problem (3)).*
- **Projection of set of FDs F**: If R is decomposed into X, ... projection of F into X (denoted F_X) is the set of FDs U → V in F^+ (closure of F) where U,V are both in X.

Dependency Preserving Decomp. (Cont'd.)

- The decomposition of R into X and Y is dependency preserving if (F_X union F_Y)^+ = F^+
 - I.e., if we consider only dependencies in the closure F^+ that can be checked in X without considering Y, and in Y without considering X, they imply all dependencies in F^+.
- Important to consider F^+, not F, in this definition:
 - R(ABC), A→B, B→C, C→A, decomposed into AB and BC.
 - Is this dependency preserving? (Is C→A preserved?)
- Dependency preserving does not imply lossless join:
 - R(ABC), A→B, if decomposed into AB and BC. *(Q: Key?)*
- And vice-versa! (So we need to check for both.)
 - Must make sure some relation contains a key for R (!!!)
Decomposition into BCNF

- Consider relation R with FDs F. If X → Y violates BCNF, decompose R into R–Y and XY. *(R–Y has X still!)*
 - Repeated application of this idea will yield a collection of relations that are BCNF, a lossless join decomposition, and guaranteed to terminate. *(Didn’t say dependency preserving...)*
 - E.g., CSJDPQV, C → CSJDPQV, JP → C, SD → P, J → S.
 - To deal with SD → P, decompose into SDP, CSJDQV.
 - To deal with J → S, decompose CSJDQV into JS and CJDQV.
- In general, several dependencies may cause violations of BCNF. The order in which we “deal with them” can lead to different sets of relations!

BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF.
 - E.g., R(CSZ) with CS → Z, Z → C.
 - Can’t decompose preserving 1st FD, not in BCNF.
- Decomposition of CSJDPQV into SDP, JS and CJDQV is not dependency preserving *(w.r.t. the FDs JP → C, SD → P and J → S)*.
 - However, it is a lossless join decomposition.
 - In this case, adding JPC to the collection of relations would give us a dependency preserving decomposition.
 - But: JPC tuples stored only for checking FD! *(Redundancy!)*
Decomposition into 3NF

- Obviously, the algorithm for lossless join decompression into BCNF can also be used to obtain a lossless join decompression into 3NF (and might possibly stop earlier).

- To ensure dependency preservation, one idea:
 - If \(X \rightarrow Y \) is not preserved, add relation \(XY \).
 - Problem is that \(XY \) may violate 3NF! E.g., consider the addition of \(CJP \) to “preserve” \(JP \rightarrow C \). What if we also have \(J \rightarrow C \)? (Which of course implies \(JP \rightarrow C \).)

- The fix: Instead of using the given set of FDs \(F \), use a minimal cover for \(F \).

Minimal Cover for a Set of FDs

- **Minimal cover** \(G \) for a set of FDs \(F \):
 - Closure of \(F \) = closure of \(G \), i.e., \(F^+ = G^+ \).
 - Right hand side (RHS) of each FD in \(G \) is a single attribute.
 - If we modify \(G \) by deleting an FD or by deleting attributes from a LHS of a FD in \(G \), the closure changes. (So we can’t!)

- Intuitively, every FD in \(G \) is needed, and \(G \) is “as small as possible” to have the same closure as \(F \).

- E.g., \(A \rightarrow B \), \(ABCD \rightarrow E \), \(EF \rightarrow GH \), \(ACDF \rightarrow EG \) has the following minimal cover:
 - \(A \rightarrow B \), \(ACD \rightarrow E \), \(EF \rightarrow G \) and \(EF \rightarrow H \)

- M.C. \(\rightarrow \) lossless-join, dep. pres. 3NF decompression! *(See book!)*
Obtaining that 3NF Decomposition

- Compute the minimal cover G, which is sometimes denoted $F^- \ (see \ book \ for \ how)$
- Search for dependencies in F^- with the same attribute set on the left hand side, α:
 - $\alpha \rightarrow Y_1, \alpha \rightarrow Y_2, ..., \alpha \rightarrow Y_k$
 - Construct one relation as $(\alpha, Y_1, Y_2, ..., Y_k)$
 - Repeat this process for all the FDs’ α’s
 - Construct a relation with any leftover attributes
 - If none of the relations contains a candidate key for the original relation R, add one more relation containing the attributes of a candidate key for R. (Q: Why?)

An Example (…that should help!)

- Analyze the given table/comments for FDs and keys and normalize it if needed:

 Workers (ssn, name, lot, since, did, dname, budget)
 PRIMARY KEY (ssn, did)

 a. Every worker has their own unique ssn.
 b. Workers also have a name and an assigned parking lot.
 c. Department ids are unique for departments.
 d. A department has a name and a budget.
 e. An employee works in a department (as of some starting date).
 f. If two employees are in the same department their lots are the same.
 g. Different departments with the same name always have different budgets.

 $(\text{ssn, did}) \rightarrow \text{ssn, name, lot, since, did, dname, budget}$
 $\text{ssn} \rightarrow \text{name, lot}$
 $\text{did} \rightarrow \text{dname, budget}$
 $(\text{ssn, did}) \rightarrow \text{since}$
 $\text{did} \rightarrow \text{lot}$
 $(\text{dname, budget}) \rightarrow \text{did}$
An Example (continued) …

To summarize: FDs

- (ssn, did) → ssn, name, lot, since, did, dname, budget
 - Primary Key from schema definition
- ssn → name, lot [from a & b]
- did → dname, budget [from c & d]
- (ssn, did) → since [from e]
- did → lot [from f]
- (dname, budget) → did [from g]

What are the candidate keys here?
(ssn, did) and (ssn, dname, budget)

What NF is this in? 1NF? 2NF?

On Refining an ER Based Design

1st diagram translated:
Workers(S, N, L, D, S)
Departments(D, M, B)
- Lots associated with workers.
Suppose all workers in a dept are assigned the same lot: D → L
Redundancy; fixed by:
Workers2(S, N, D, S)
WorkersLots(D, L)
Departments(D, M, B)
Can further fine-tune this:
Workers2(S, N, D, S)
Departments(D, M, B, L)

Before:

Notice: Lot wasn’t really a “Worker attribute”!

After:
If a relation is in BCNF, it is free of redundancies that can be detected using FDs. Thus, trying to ensure that all relations are in BCNF is a good goal.

If a relation is not in BCNF, we can try to decompose it into a collection of BCNF relations.

- Are all FDs preserved? If a lossless-join, dependency-preserving decomposition into BCNF is not possible (or unsuitable for typical queries), consider 3NF instead.
- Decompositions should be carried out while also keeping performance requirements in mind.