1. (7 points) Let’s turn yet again to our favorite university DB example:

- **Prof**\((pno,\ pname,\ salary,\ age,\ email)\) — info about *Professors*
- **In**\((pno,\ dno,\ percent)\) — Professors can be *In* several departments
- **Dept**\((dno,\ dname,\ college_id,\ chair_pno)\) — info about *Departments*

Consider the B+ tree index on Prof.age pictured below:

(a) (2 pts) Draw what this index will look like after firing the 35-year old professor(s):

(b) (2 pts) How many page reads will the delete operation take? How many page writes?

\[\text{# reads: } \underline{_____}\quad \text{# writes: } \underline{_____}\]
(c) *(1 pt)* Suppose a frequent query asks for professors in a specified age range. Ideally, should this index be clustered or unclustered? () Clustered () Unclustered

(d) *(2 pts)* Draw what the *original* B+ Tree index from the previous page will look like after hiring a new 42-year old professor:

(e) *(1 pts)* Write a SQL query that this B+ tree index enables an index-only plan for:

(2) *(2 points)* Consider next the static hashed index on Prof.pno pictured below:

(a) *(1 pt)* How many page reads will it take to locate the professor whose professor number is 36? # reads: _______

(b) *(1 pt)* Draw what the static hashed index will look like after hiring a new professor with a professor number of 76.