Introduction to Data Management

Lecture #2
(Conceptual DB Design)

Instructor: Mike Carey
mjcarey@ics.uci.edu

Announcements

- Reminders:
 - Sign up on Piazza! (Some still haven’t done this...)
 - First real quiz in discussions next week! (Study! 😊)
- HW #1 will be available today (early!)
 - New startup company: “TrueOnlyUSNews.com”
 - First step: Develop an E-R model for them!
 - A word on timing/logistics/changes...
- Today’s topic(s): Conceptual DB design
 - Basic E-R concepts
 - E-R schema design
 - Advanced E-R features
- Any lingering Q’s from last time?
Overview of Database Design

- **Conceptual design:** (ER Model used at this stage.)
 - What are the entities and relationships in the enterprise?
 - What information about these entities and relationships should we store in the database?
 - What are the integrity constraints or business rules that hold?
 - A database schema in the ER Model can be represented pictorially (using an ER diagram).
 - Can map an ER diagram into a relational schema (manually or using a design tool’s automation).

ER Model Basics

- **Entity:** Real-world object, distinguishable from all other objects. An entity is described (in DB-land) using a set of attributes.
- **Entity Set:** A collection of similar entities. E.g., all employees.
 - All entities in an entity set have the same set of attributes. (Until we get to ISA hierarchies…)
 - Each entity set has a key (a unique identifier); this can be either one attribute (an “atomic” key) or several attributes (called a “composite” key)
 - Each attribute has a domain (similar to a data type).
ER Model Basics (Contd.)

- **Relationship**: Association among two or more entities. E.g., Santa Claus works in the Toy department.
- **Relationship Set**: Collection of similar relationships.
 - An n-ary relationship set R relates n entity sets $E_1 \ldots E_n$; each relationship in R involves entities $e_1:E_1, \ldots, e_n:E_n$
 - One entity set can participate in different relationship sets – or in different “roles” in the same set.

Cardinality Constraints

- Consider Works In: An employee can work in many departments; a dept can have many employees.
- In contrast, each dept has at most one manager, according to the cardinality constraint on Manages above.

(Note: A given employee can manage several departments)
Participation Constraints

- Does every department have a manager?
 - If so, this is a participation constraint: the participation of Departments in Manages is said to be total (vs. partial).
 - Every Departments entity below must appear in an instance of the Manages relationship
 - Ditto for both Employees and Departments for Works_In

ER Basics: Another Example

- Let’s see if you can read/interpret the ER diagram above...! (©)
 - What attributes are unique (i.e., identify their associated entity instances)?
 - What are the rules about (the much coveted) parking passes?
 - What are the rules (constraints) about professors being in departments?
 - And, what are the rules about professors heading departments?
Another Example (Answers)

- Unique attributes:
 - Professor.fac_id, Dept.dno, Parking Space.pid

- Faculty parking:
 - 1 space/faculty, one faculty/space
 - Some faculty can bike or walk (☉)
 - Some parking spaces may be unused

- Faculty in departments:
 - Faculty may have appointments in multiple departments
 - Departments can have multiple faculty in them
 - No empty departments, and no unaffiliated faculty

- Department management:
 - One head per department (exactly)
 - Not all faculty are department heads

NOTE: These things are all “rules of the universe” that are just being modeled here!

Q: Can a faculty member head a department that he or she isn’t actually in?

Another Example (E’s & R’s)

Diagram showing relationships between Parking Spaces, Professors, and Departments.

Diagram shows:
- Parking Spaces: S1, S2, S3
- Professors: P1, P2, P3, P4
- Departments: D1, D2, D3
- Assigned (1:1): Parking Spaces to Professors
- In (M:N): Professors to Departments
- Head (1:N): Departments to Professors

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke
Weak Entities

- A *weak entity* can be identified uniquely only by considering the primary key of some other (*owner*) entity.
 - Owner entity set and weak entity set must participate in a one-to-many relationship set (one owner, many weak entities).
 - Weak entity set must have *total* participation in this *identifying* relationship set.
 - Dependent identifier is unique only within owner context (___), so its fully qualified key here is (ssn, dname)

Ternary Relationships (and beyond)

- A prescription is a 3-way relationship between a patient, a doctor, and a drug; with the cardinality constraints above:
 - A given patient+drug will be associated with *one* doctor (1)
 - A given patient+doctor may be associated with *several* drugs (N)
 - A given doctor+drug may be associated with *several* patients (M)
 - **General note:** Relationship key ≤ (entity keys)
ISA (“is a”) Hierarchies

- As in Java or other PLs, ER attributes are inherited (including the key attribute).
- If we declare A ISA B, every A entity is also considered to be a B entity.
- **Overlap constraints:** Can Joe be an Hourly_Emps as well as a Contract_Emps entity? (Allowed or disallowed)
 - Ex: Hourly_Emps OVERLAPS Contract_Emps (else pick 1 of the 3 types)
- **Covering constraints:** Does every Employees entity also have to be either an Hourly_Emps or a Contract_Emps entity? (Yes or No)
 - Ex: Hourly_Emps AND Contract_Emps COVER Employees (pick 1 of 2 vs. 1 of 3)
- Reasons for using ISA:
 - To add descriptive attributes specific to a subclass.
 - To identify subclasses that participate in a relationship.
- Design: specialization (top-down), generalization (bottom-up)

Additional Advanced ER Features

- Multi-valued (vs. single-valued) attributes
 - Employees
- Derived (vs. base/stored) attributes
 - Employees
- Composite (vs. atomic) attributes
 - Employees

NOTE: Can model (two of) these using additional entity and relationship types.